$10 n 1$ Laws of Exponents \& Logarithms

Exp. Law 1: $\left(b^{x}\right)\left(b^{y}\right)=b^{x+y}$, e.g. $\left(\mathbf{2}^{3}\right)\left(\mathbf{2}^{\mathbf{2}}\right)=(\mathbf{2 x 2 x 2})(2 \times 2)=2^{3+2}=\mathbf{2}^{\mathbf{5}}=\mathbf{3 2}$
Exp. Law 2: $\left(\mathbf{b}^{\mathrm{x}}\right) \div\left(\mathbf{b}^{y}\right)=\mathbf{b}^{\mathrm{x}-\mathrm{y}}$, e.g. $\left(\mathbf{2}^{3}\right) \div\left(\mathbf{2}^{2}\right)=\mathbf{2}^{3-2}=\mathbf{2}^{1}=\mathbf{2}$
Exp. Law 3: $\left(\mathbf{b}^{\mathrm{x}}\right)^{\mathrm{y}}=\mathrm{b}^{\mathrm{xy}}$, e.g. $\left(\mathbf{2}^{3}\right)^{\mathbf{2}}=\mathbf{2}^{3 \times 2}=\mathbf{2}^{6}=64$
Exp. Law 4: (ab) $=\left(\mathbf{a}^{\mathrm{x}}\right)\left(\mathbf{b}^{\mathrm{x}}\right)$, e.g. $(2 \times 3)^{3}=\left(\mathbf{2}^{3}\right)\left(\mathbf{3}^{3}\right)=8 \times 27$
Exp. Law 5: $\mathbf{b}^{-x}=1 / b^{x}$, e.g. $2^{-3}=1 / \mathbf{2}^{3}=1 / 8$
Exp. Law 6: $(\mathbf{a} / \mathrm{b})^{\mathrm{x}}=\left(\mathbf{a}^{\mathrm{x}}\right) \div\left(\mathrm{b}^{\mathrm{x}}\right)$, e.g. $(2 / 3)^{3}=\left(\mathbf{2}^{3}\right) \div\left(3^{3}\right)=8 / 27$
Exp. Law 7: $\mathbf{a}^{1 / 2}=\sqrt{ } \mathbf{a}$, 'square root' of 'a', e.g. $4^{3 / 2}=\left(4^{3}\right)^{1 / 2}=\sqrt{ } 64=8$
Just like laws, logarithms are cantankerous, confusing and convoluted.
Furthermore, 'logarithm' is just a complicated and inverted term for 'exponent'. So basically, logarithm = exponent.

Mathematically speaking:

$\log _{b} Y=X$ means that $b^{x}=Y$ where b, X and Y are positive real numbers and $b \neq 1$ b is the 'base', X is the 'logarithm' or 'exponent' and Y is the result

For example, $\log _{10} 100=2$ means that $10^{2}=100$
Don't worry, you'll get it with practice. Working with actual numbers will help you see how logarithms work. By the way, if you see $\log Y=X$ without any base listed, the base is assumed to be 10. So for example, Log $100=2$ means $10^{2}=100$, just like above.

The laws below are used to manipulate (fiddle with) logarithm problems algebraically. Think of this as a logarithm tool box. Chances are that one of these tools will help you solve a logarithm problem.
$\log \operatorname{Law} 1: \log _{\mathrm{b}}(\mathrm{MN})=\log _{\mathrm{b}} \mathrm{M}+\log _{\mathrm{b}} \mathrm{N}$, e.g. $\log _{2} 32=\log _{2}(4 \times 8)=\log _{2} 4+\log _{2} 8=2+3=5$
$\log \operatorname{Law} 2: \log _{\mathrm{b}}(\mathrm{M} / \mathrm{N})=\log _{\mathrm{b}} \mathrm{M}-\log _{\mathrm{b}} \mathrm{N}, \mathrm{e} . \mathrm{g} . \log _{3} 9=\log _{3}(27 / 3)=\log _{3} 27-\log _{3} 3=3-1=2$
$\log \operatorname{Law}$ 3: $\log _{b} N^{x}=x \log _{b} N$, e.g. $\log _{3} 9^{2}=2 \log _{3} 9=2 \times 2=4$
$\log \operatorname{Law} 4: \log _{b} b=1$, e.g. $\log _{3} 3=1$, because $b^{1}=b$ or $3^{1}=3$
$\log \operatorname{Law} 5: \log _{\mathrm{b}} 1=0$, e.g. $\log _{3} 1=0$, because $b^{0}=1$ or $3^{0}=1$
\log Law 6: $\log _{\mathrm{b}}(1 / N)=-\log _{\mathrm{b}} N$, e.g. $\log _{3} 1 / 9=-\log _{3} 9=-2$, because $3^{-2}=1 / \mathbf{3}^{2}=1 / 9$
$\log \operatorname{Law} 7: \log _{b} N=\left(\log _{a} N\right) /\left(\log _{a} b\right)$, e.g. $\log _{4} 16=\left(\log _{2} 16\right) /\left(\log _{2} 4\right)=4 / 2=2$
Are we having fun yet?!!!
:>)

10n1 Educational Consulting(C)
www.10n1Education.com
Tel: 781-608-0337

